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SUMMARY 

The quasi-three-dimensional equations controlling the groundwater flow in heterogeneous and inter- 
connected aquifer systems are discretized by finite elements, considering also the aquifer branching. A 
new method for fluid mass balance evaluation based on the equivalent nodal source (E.N.S.) concept 
allows one to express the balance in conservative terms, and interpret finite element equations as nodal 
balance equations. The solution of the system is based on the frontal method. Use of substructures 
limits the frontal increase in correspondence to the aquifer branching. In the steady state, the frontal 
method is integrated with an iterative solution technique to eliminate the frontal increase caused by the 
presence of aquitards. It converges very rapidly, using a forcing technique with an automatic parameter 
definition. In the unsteady case the same scope is achieved using a predictor-corrector procedure which 
employs the Crank-Nicolson method in the corrector phase. 

This very stable procedure permits use of fairly long time-steps and concerns the case of source terms 
depending on  piezometry (problem of interaction between water table and river). This method has 
been tested with several fairly complex cases. 

KEY WORDS Finite Element Quasi-three-dimensional Interconnected Aquifer Systems Fluid Mass Balance 
Iterated Frontal Method Predictor-Corrector Method 

INTRODUCTION 

The quasi-three-dimensional equations governing the groundwater flow in regional aquifer 
systems are the most suitable to describe the physical system. In fact, unlike the two- 
dimensional equations, they allow the proper representation of aquifers lying on super- 
imposed levels, hydraulically connected by means of interbedded aquitards. In addition this 
model takes into consideration the aquifer branching. In fact it is the only model that 
correctly outlines the phenomenon at a regional scale, inasmuch as the three-dimensional 
model, which theoretically better represents the ground water trend, in this context could not 
be used for practical purposes. 

The regional aquifers are characterized by surface dimensions much larger than the 
thickness. To avoid ill-condition in the solution of the linear system, the mesh’s 
dimensions should all be of the same magnitude order. In the three-dimensional case, this 
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would imply an excessive number of meshes, also for problems of limited areal extension. 
Neuman and Witherspoon’ pointed out that the solution of a quasi-three-dimensional 

model is near to the three-dimensional one, in the case in which the permeability contrast 
between aquifers and aquitards is of several orders of magnitude (as occurs in reality). 
Recently, several authors have used various methods for the discretization and numerical 
solution of these equations. Mathematical models for aquifer systems requires a different 
degree of detail for different areas of the aquifer system. This implies use of a method which 
allows a discretization with meshes of different widths, in the various network areas. 
Fujinawa2,” and Chorley and Frind4 describe the finite element discretization of the problem 
in the hypothesis of overlying aquifers with interbedded aquitards. 

The practical value of the above mentioned methods is nevertheless limited owing to the 
lack of adequate solutions for the aquifer branching problem and for fluid mass balance 
evaluation. The solution to  these problems is given in this paper. Moreover the numerical 
methods developed fulfil all the requirements for their industrial application (capability to 
solve a large linear system without any problem of convergence and stability, with limited 
use of CPU time). 

QUASI-THREE-DIMENSIONAL MODEL EQUATIONS 

In the quasi-three-dimensional model the aquifer system is composed of aquifers and 
aquitards. The latter are made up of semipermeable layers which separate superimposed 
aquifer zones. The aquifers could present branching as shown in Figure 1. 

Water flow has a horizontal course on the aquifers and is here governed by two- 
dimensional equations. It has a vertical course on aquitards, and is governed by one- 
dimensional equations. 

The quasi-three-dimensional model originates from coupling two-dimensional equations 
for aquifers with the one-dimensional equations for aquitards. The following equation 
describes the two-dimensional water flow for the aquifers: 

(T$)+: ( T $ ) = L 2 - L l + Q + S -  ah 
at 

where 

T = transmissivity (fixed for confined aquifers, linearly dependent on the 
piezometry for phreatic aquifers) 

L, and L1 =top and bottom leakage terms 
Q = source term 
S =storage coefficient for confined aquifers and effective porosity for phreatic 

aquifers. 
h = average aquifer piezometry (averaged along aquifer thickness). 

branching 
line - 2nd aquifer 

Figure 1. Multilayered aquifer system 
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The following one-dimensional equation is used for the aquitards: 

where 

K = vertical permeability of aquitard 
S ,  = specific storage coefficient 
h* = piezometry along aquitard thickness 

The conditions that should be applied to the aquifer boundary are of the Dirichlet type: 

h=ho7 o n r ,  (3)  
and of Neumann type: 

- ah 
an 

T-=cpo onr ,  (4) 

where I' = I?, + rz is the aquifer boundary. Along the aquifer branching lines, the piezometry 
continuity conditions are: 

and the flow conservation: 

ah 
an 

cp = - T -  (7) 

The derivative ah/& should be calculated along the normal at the branching line. Coupling 
of the aquifer two-dimensional equations (1) with the aquitard one-dimensional equations 
(2) takes place through leakage terms: 

(zT and zB are the quotas at top and bottom of the aquitard respectively)2 and identifying 
the piezometry of the aquitard with that of the aquifer in correspondence to separation 
surface at top and bottom of the aquitard: 

Finally, the initial conditions at aquifers and aquitards should be added. 

Finite element discretization and formulation of the E.N.S. method for the fluid mass balances 

The Galerkin method is applied for the finite element discretization, with linear shape 
functions both for aquifers and aquitards. Triangular elements are used for aquifers. On the 
aquitards the one-dimensional finite elements, which connect two nodes located along the 
same vertical, are all the same length and together form an aquitard macroelement. 

Figure 2 illustrates this discretization, pointing out the branching line treatment and the 
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branching 
line 

c-- 1st aquifer 
level 

aquitard 

- Pnd aauifer 
level 

Figure 2. Finite element discretization of a multilayered aquifer 

connections between aquifers and aquitards. By applying the Galerkin method to equation 
(2) valid for aquitards, we obtain the differential equation system: 

These equations concern only the nodes within aquitard macroelements, or the boundary 
nodes which are subject to imposed flow conditions. The right-hand terms of the system are 
all null except those related to nodes near those subject to imposed piezometry conditions, 
or subject to imposed flow conditions. For the latter, the right-hand term is: 

b. = -L (IS) 

where L =imposed flow (or leakage) on the node. 
The matrices included in system (SO) are obtained by assembling similar matrices and right 

hand terms pertaining to generic elements of nodes i and j (i precedes j on the vertical). The 
matrices are: 

E = i ,  j ;  m=i,  j ;  Az=(zj-zi)  

The fluid mass balance can be estimated with the E.N.S. method for each element on the 
basis of the following four items: 

F, = imposed flow 
F, =flow deriving from contiguous elements 
F, = flow equivalent to imposed piezometry conditions 
F, = storage depletion 

This balance concerns a column of aquitards of unit section which extends over the entire 
element thickness. The first item is present only if a node of the element is subject to 
imposed flow conditions. The second item is present in correspondence to each node which is 
not subject to imposed flow conditions nor to imposed piezometry conditions. 

In order to define, on an element node, the flow deriving from contiguous elements, we 
will divide the macroelement into two parts A and B corresponding to node P, (Figure 4). 
We will define in element ( E )  the flow deriving from element ( E  + S) through node PI, as that 
flow which, when imposed on node P, at part A of the macroelement, supposedly interrupted 
on PI (see Figure 4), is able to reproduce on part A of the structure, the same piezometry 
obtained on the uninterrupted structure, as in Figure 3.  
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Figure 3. Non-interrupted macroelement 

If we indicate the contributions to assembly system (10) of matrices deriving from part A 
of the macroelement using a; and c;, and those deriving from part B using a: and c:, in 
relation to node Pi: 

qs = a, +a, 
(13) cis = c;+ A c; ") 

The equation of system (10) related to node Pi (internal) could be written as follows: 

The term L which appears in (14) represents, on the basis of the given definition, the flow 
originating from part B on part A through node Pi. In order to define the flow with these 
equations it is necessary to previously calculate the piezometry, thus solving system (10). In 
this case, for the evaluation of flow L it is convenient to use the first equation of system (14). 
This allows determination of flow deriving from part B on part A through node Pi, resorting 
only to part A data. 

In particular, using only the matrices Al,m, Cl,m of an element, it is possible to define the 
incoming flow, through the nodes of the element. 

In a similar manner, we could define the flow equivalent to the imposed piezometry 
conditions as the flow imposed on a node, instead of the imposed piezometry condition, able 
to reproduce the same piezometric values on the aquitard macroelement. 

The same equations (15) and (16) can be obtained for the terms Fpi and Fpi. The last 
balance item, the flow which represents storage depletion in unsteady state, is given by the 

Figure 4. Interrupted macroelement 
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following: 

for each element the following equation is verified: 

Fi + F,+ Fp + F;, = 0 (18) 
which shows how this procedure of evaluation of fluid mass balance preserves the mass. 

Since condition (9) of coupling between aquitards and aquifers is comparable to an 
imposed piezometry condition for aquitards, it would be appropriate to use expression (15) 
and (16) for the definition of leakage terms L, and L1 indicated in equation (1). These 
expressions indicate the leakage term as a flow equivalent to the imposed piezometry 
condition, at top and bottom of the aquitards. 

This leakage term expression coincides with that obtained by F~jinawa.'*~ Applying the 
Galerkin method to equation (1) we obtain the following linear system: 

CH+AH=B 

In this system Co, A', b and h represent the discretization of equation (1) on aquifers; and 
C*, A*, b* and h* the discretization of equations (2) on aquitards. Co* and A** represnt the 
coupling conditions between aquifers and aquitards and derive from leakage terms L2 and 
L,, whereas C** and A** represent the coupling conditions between aquitards and aquifers, 
by assimilating condition (9) of coupling to an imposed piezometry condition on the 
aquitards. The matrices and right hand term of system (19) are obtained by assembling the 
matrices and the right hand terms of aquifer and aquitard elements. 

For the aquifers, the terms Ni, NJ and Nk are used for linear shape functions of the 
element associated to the 3 nodes i, j and k.  Matrix A of system (19) is obtained by 
assembling the following elementary matrices: 

which contributes to assembly of A* 

Cf, = b, SN,N,,, dA ; 1, m = i, j ,  k 

which contributes to assembly of C*. Assuming that the leakage terms on nodes are 
evaluated on the basis of equations (15) and (16), and that they vary linearly inside the 
element, we have the following contributions for assembly of matrices A and C. 

A3 -- N,N,dA; l , r n = i , j , k  

which contributes to the assembly of A* 

NINm dA; 1, m = i, j ,  k m* = i*, j * ,  k* A*3 -- Krn 
I m *  - Az, Ls 
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The terms i*, j " ,  k", indicate the nodes of aquitards in proximity to nodes i, 3, and k which 
are used in (14) and (16). This matrix contributes to the assembly of A'* 

S Az, c3 __ sm NINm dA ; 1, m = i, j ,  k f m -  

which contributes to the assembly of Co 

S Azm ~ " 3  - sm NINm dA; 1, m = i, j ,  k m* = i*, j " ,  k" Im* - 

which contributes to the assembly of Co". In these last 4 formulae Km indicates the 
macroelement's permeability of the aquitard related to node m, and S,, indicates the specific 
storage coefficient related to it. The term Az instead indicates the thickness of the relative 
aquitard element. 

Finally, formula (12) defines the contributions to the assembly of A*, A** , C* , C**. The 
right-hand terms of this system are also obtained by assembling the right-hand terms 
pertaining to each element. Assuming that the source term used in (1) varies linearly and 
assumes the values Qi, Qi, and Qk for the 3 elements nodes, we have the following 
contributions to assembly of the right hand term. 

b, = -c QmLe NINm dA;  I ,  m = i, j ,  k 
m 

whereas, if Q = qoS(x - x,  >S(y - yo) represents a concentrated source, with intensity qo 
located at point (xo ,  yo), we have: 

bl = -q0Nl(x07 YO) (27) 

In particular if point (xo ,  yo) coincides with one of the 3 nodes, for example I = i, we have: 

b. = - q  o, b.=b J k - 0  - (28) 

This observation allows interpretation of the right-hand term of equation (19) related to the 
aquifer nodes, as for a point source, located at node P, with an intensity of -b,. Once this has 
been established, we are able to define the E.N.S. method for fluid mass balance evaluation 
on aquifers, as described in the following. 

Assembly of the right-hand term of system (19) is completed by the contribution which 
derives from the condition of imposed flow on aquifer: 

It is obvious that by using the procedure adopted to estimate the leakage terms, the matrices 
A and C of system (19) are symmetric, in relation to the fact that the equations which govern 
the fluid movement are self-adjoint. This does not occur when using traditional methods, 
such as those used by Chorley and Fr i r~d .~  The fluid mass balances can be expressed for the 
aquifers in conservative terms on each element, using a procedure similar to the one used for 
aquitard elements. 
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The items used in this fluid mass balance are: 

q1 = distributed source 
q2 = concentrated source 
q3 =top leakage 
q4 = bottom leakage 
q5 = source equivalent to the imposed flow conditions 
q6 = source equivalent to the imposed piezometry conditions 
q7 = fluid deriving from contiguous elements 
qs = storage depletion 

Each of these 8 balance items related to the element can be divided into 3 terms associated 
with 3 element nodes. The balance terms associated with nodes allow interpretation of the 
equation of system (19) as balance equations. 

As for the balance terms, index e represents the balance terms referred to the element, 
and indices m = i, j ,  k represent the same terms referred to element nodes. 

q1 = distributed sources 

we have ql1 +qI i  + q1k = qle since Ni + Nj + Nk = 1 

q2 = concentrated sources 

q2e = C qr ; 42m = C q r N r n ( q 9  ~ r )  (31) 
the sum is applied to all concentrated source terms located on the points (xr ,  yr> inside the 
element. 

q3, q4 = leakage terms. Using the term L to indicate L,  or -L1 we have 

Leakage is evaluated on element nodes by using (15) or (16) and interpolating linearly inside 
the element. 

q5 = source equivalent to the conditions of imposed flow 

re is the boundary of element. cp is posed equal to zero for the sides where imposed flow 
conditions do not exist, and is posed equal to the given flux for the sides where such 
conditions hold. 

q6 = source equivalent to conditions of imposed piezometry. The nodal source equivalent to 
the imposed piezometry condition on a node, is defined in the same manner for aquifers as 
for aquitards. It is defined as a point source term, located on a node whose intensity enables 
to reproduce the same piezometry on the whole system, after having removed the imposed 
piezometry condition on the node. On the basis of the observations related to formulae (27) 
and (28), this balance term can be determined starting from the equation obtained by 
assembling system (19) for the node, as if the conditions of imposed piezometry did not exist. 
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Using in this equation, the piezometry obtained by the solution of system (19) previously 
obtained with the imposed piezometry condition, there is a residual, usually not zero, which 
changed in sign, gives a source term equivalent to the imposed piezometry condition on the 
node. 

The analogous term referred to the imposed piezometry condition on the node, limited to 
the sole element under observation, is obtained by considering in (34) only the contributions 
to the equation deriving from assembly of the element 

S S 

where a;%, c;,, b; indicate the contributions to assembly of the system related to the 
element. 

The source term pertaining by this item to the element, is obtained by adding the 
contributions qgm pertaining to element nodes, subject to imposed piezometry conditions. 

q7 =fluid deriving from contiguous elements. In order to define this balance item we will 
consider the elements which meet on node P,, divided into 2 parts A and B, as in Figure 5 .  

Indicating by a;, c&, bp, a:, c:, bp, the contributions to the assembly of equations in 
system (19) for node P,, which derive from the two groups of elements meeting on node P,, 
we have: 

c,, = cg+c: 
b, = b f +  ba 

and the equation of system (19) related to node P,, can be written as: 

( 3 5 )  

According to the above-said observations, the term q,. can be interpreted as a concentrated 
source term, located on node P,. This interpretation allows to define q, as a source term 
equivalent to the influence of part B on part A through node P,. This source term can be 

Figure 5. Section of a structure in correspondence to node Pi for evaluation of the nodal source equivalent to the 
influence of part B on part A through node Pi 



454 L. SARTORI AND G. PEVERIERI 

evaluated once the system (19) has been solved, and both h, and hs are known. In this case, 
to evaluate q: it would be more suitable to use the first of the equations in (36). 

(37) q: = bp-  1 agh, - 1 cffh,  

The reason for this is that this equation permits evaluation of the fluid flow from part B to 
part A on node P,, using the only data deducible from the assembly of the elements found in 
part A. It should be noted that this balance item, as the preceeding one, similarly to the 
situation expressed by (15) and (16) for the aquitards, considers also the time derivatives of 
the piezometry on the nodes. This differs from the traditional estimation methods which 
consider the spatial gradient. Considering a particular case, the part A under observation is 
reduced to a single element. Equation (37) becomes: 

-q;,,, = 1 a",hs + 1 c$shs - bk (38)  

and supplies the nodal source term, equivalent to the influence of the remaining structure on 
the element, through its 3 nodes. Summing these 3 items, one obtains the term q7e pertaining 
to the element. 

q8 = storage depletion 

It is easy to ascertain that this procedure for evaluation of fluid mass balance on the element, 
is conservative. In fact, by summing the 3 expressions which supply the fluid deriving from 
contiguous elements on 3 elements nodes: 

(40) 

q? = bP- 1 a%h, - 1 &h, 
qp = bj"- 1 a;shs - 1 c;,h, 
d = bek- 1 aEShs - 1 cekshs 

we obtain the following equation: 

qIe+q,e+. .*+q8e=o (41) 

Moreover, the equations of system (19) on this basis can be rigorously interpreted as balance 
equations, regarding the equivalent nodal sources which act upon each node. This procedure 
permits the evaluation of fluid mass flow, through any aquifer section, as the sum of the 
nodal sources, equivalent to the action of part B on part A, for all the nodes of the section 
line. Figure 6 illustrates this situation. This balance evaluation along the line is conservative, 
in the sense that it could be made both on the basis of data related to part A and those 
related to part B, and both values coincide. 

Figure 6. Section of a structure along a line for the evaluation on the flow of fluid mass, as the sum of nodal sources 
equivalent on the line nodes 
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By evaluating the fluid mass flow through the branching lines in this manner, condition (6) 
of mass conservation along the branching line is rigorously verified. 

The above-mentioned method for balance evaluation is applicable also to analogous 
equations which govern other physical phenomena such as distribution of electrical or 
thermal fields, and can be extended to the three-dimensional case. It could be formulated 
also in the case of a general shape function. 

NUMERICAL SOLUTION IN STEADY STATF? CASE 

In the steady state case, the discretization of finite element brings to a system of ordinary 
linear equations. Ah=b 

With a uniform permeability along the z-axis, the piezometry trend along this axis is linear 
and every aquitard macroelement can be reduced to a single element. 

The matrix A, in this case is limited to part A*. The steady state equations are used only 
for calibration of the mathematical model, consisting in the solution by various attempts of 
an inverse problem. In this case the piezometry is known in advance and thus the wet 
thickness in the acquifer’s phreatic zones. 

For this reason, it is possible to use equations of aquifers under pressure even in phreatic 
zones, and system (42) thus results linear. Particularly suitable is the frontal method of Irons5 
for the solution of similar systems, especially if applied to two-dimensional cases. This 
method is substantially a method of Gaussian type elimination, without pivot, which 
combines the forward elimination of variables, with that of system matrix assembly. Order of 
elimination of variables is guided by the order of element assembly. One variable is 
eliminated as soon as the assembly of all elements which refer to it is complete. All the 
variables which appear during the assembly of elements (since one or more elements refer to 
them), and are not yet eliminated (because other elements not yet assembled refer to them) 
form the active variables front. 

The active variables front varies dynamically during the forward elimination and the back 
substitution. Application of the frontal method in our case, similarly to three-dimensional 
cases, sets the same limits to the problems which can be treated, owing to the high number of 
active variables which we can have in the front. In our case this is due to 2 causes: aquifer 
branching and presence of aquitards. The method which we propose eliminates this problem. 

The front increase caused by aquifer branching is limited when resorting to the substruc- 
turing. This permits a temporary elimination, from the active variables front, of the variables 
corresponding to the branching lines. These appear subsequently, when only the variables of 
bordering nodes between substructures are processed. Introduction of substructuring into the 
frontal method develops as follows. 

In every substructure the bordering nodes between substructures are indicated by using a 
negative number. All the negative nodes of a substructure define the pseudoelement of the 
structure. The substructures are examined one by one for assembly and forward elimination. 
During this stage the variables with negative number are never eliminated. 

By processing all the elements of a substructure, the residual active variables front defines 
the pseudo-element of the substructure which is registered on appropriate file. The residual 
matrix in memory related to the contributions of the variables already eliminated in the 
substructure to element assembly and forward elimination, and the same right hand term, 
form the stiffness matrix and right-hand term of the pseudo-element. They are registered in 
appropriate files to be processed subsequently. 
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After having processed the substructures in this manner, all the variables with positive 
numbers are subjected to  a forward elimination process. 

At this point the substructure pseudoelements are processed as normal elements within the 
fontal method, thus concluding the forward elimination phase for variables with negative 
numbers. The back substitution concerns at first the pseudoelements, for which we obtain an 
output for elements registered in the appropriate file. Thus, one proceeds to the phase of 
back substitution in the single substructures. The substructures are examined inversely. The 
memory zone which should contain the piezometry in the back substitution processes of the 
frontal method is initialized with the piezometry of the respective pseudoelement taken from 
the appropriate file. Subsequently the substructure elements are processed for back substitu- 
tion. This method is used for all substructures. For the efficiency of this method, the 
branching line nodes should coincide with the bordering nodes between substructures. 

However, the substructuring technique does not solve the problem of front increase caused 
by the presence of aquitards, which relate the nodes of one level to those of the underlying 
level. The variables of nodes subject to leakage remain in the active variables front, until all 
the elements which refer to it in every level, have been assembled. In order to solve this 
other problem, we inserted an iterative process within the substructured frontal method. The 
above process transfers the contribution of the leakage, to the right-hand side of the 
equations. This iterative method employs a forcing technique of iterations. The optimal 
forcing factor is automatically evaluated by using a few iterations without forcing. During 
calibration of the mathematical model, numerous calculations are carried out on the same 
network. Each of these calculations differs from the previous one in a few variations made to 
the boundary conditions or to the physical parameters. 

Usually, these variations only slightly affect the computed forcing factor of iterations. In 
the major part of these cases it is possible to exclude automatic calculation of the forcing 
factor by using the value determined in a previous elaboration, thus avoiding the related 
iteration process. Following is a description of the simple iteration method used to estimate 
the forcing factor, of the forced iteration method and of the iterated frontal method. The 
latter represents the implementation of the forced iteration method with automatic calcula- 
tion of the forcing factor, within the substructured frontal method, and is the numerical 
method used to solve system (42). The formulation of these iterative methods considers 
matrix A of system (42) split into 2 addends: 

where part Al derives from the assembly of contributions due to leakage, expressed by 
formulae (22) and (23). System (42) can now be written as follows: 

A=&+Al  (43) 

Aoh = b- Alh (44) 

From the system written as above we can deduce 2 iterative processes. 

(a) Simple iteration method 

This is obtained by iteratively applying the following relation: 

&h" = b - A,h"-' (45) with ho = 0. 
This iterative scheme determines firstly solution h1 assuming that the aquitards are 

impermeable. Subsequently, on the basis of this piezometry, the leakage terms are deter- 
mined using (15) and (16) (without time terms in this case) and transferring everything to the 
right hand term. 
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Thus, a new piezometry is determined iteratively. Indicated as: 

E" =h"-h (46) 
the difference between the nth iteration and the solution of system (42), this error will 
propagate with the following law: 

En = p E n - *  (47) 
(48) 

the iterative process (45) is convergent if and only if all the eigenvalues of P have modulus 
less than one. Relations (22) and (23) define those matrices that, when assembled, produce 
A,. These relations point out that the A, matrix terms (and thus the P matrix terms) are 
directly proportional to aquitard permeability and inversely proportional to the thickness. 

Consequently, even the dominating eigenvalue of the matrix P is directly proportional to 
the permeability and inversely proportional to the aquitard thickness. Therefore, we can see 
that the above-mentioned process does not always converge. In particular, it does not 
converge for problems with high permeability aquitards and small thickness. Moreover, when 
the iterative method is convergent, convergence is faster for higher thickness and lower 
permeability in aquitards. Another important aspect for the following considerations is that 
the described iterative procedure, both when it converges and when it diverges, presents a 
fluctuating behaviour. 

This fact was experimented by us in all its numerous applications to practical cases and 
hypothetical ones. 

p = -A-*A 0 1  

(b) Method of forced interations 

The system described as in (44) brings to the second iterative scheme: 

AJh" - hn-') = (b - Ah"-') (49) 

where a indicates the forcing factor of iterations. The iterative scheme can be written as 

h" = (1 - a)Ih"-'+ aA;'(b- Alh"-') (50) 
follows: 

To study the convergence of this second iterative scheme we analyse the eigenvalues of 
matrix P which guides the propagation of error; 

(5 1) 

Since this matrix is expressed by a linear polynomial in matrix P, which in turn expressed 
the propagation of error in the previous iterative scheme, we can deduce that the eigenvalues 
of the two matrices are tied by the same linear relation: 

P = (1 - a)I + aP 

p=(l-a)+aA (52) 

p indicates the eigenvalues of P and A those of P. This equation is represented graphically 
by a bundle of straight lines having centre at the point (1, 1) of the (A, p )  plane as illustrated 
in Figure 7. 

The oscillating trend of the iterative solution technique (45) points out that the dominating 
eigenvalue of matrix P is real (P is symmetrical) and negative. The eigenvalues of P can be 

(53) 
ordered as follows: 

where A0 is the dominating eigenvalue. 

A o G h l G . .  .<A,, 
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I P matrix spectrum 

Figure 7. Relationship between eigenvalues of P and P 

We will consider in this iterative solution technique, that particular forcing factor a0 which 
in equation (52) changes the dominating eigenvalue of P to 0. 

1 
(Yo=- 

l - h o  (54) 

As can be observed in Figure 7, in this case all the negative eigenvalues of matrix P are 
transformed into positive and less than 1 eigenvalues (in fact less than 1 - c ~ ~ ) .  

Eventual positive eigenvalues less than 1 of P remain positive and less than 1 in P. Thus 
we can assume that this second iterative scheme is convergent even when the first scheme is 
not convergent, provided that the dominating eigenvalues of P is negative and P does not 
include positive eigenvalues higher than 1 in its spectrum. 

(c) The iterated frontal method 

The frontal method is a Gaussian method and thus for the solution of system (42) uses a 
factorization of matrix A in the form of: 

where: A = LDLT (55) 

D = diagonal matrix 
L = lower triangular matrix 

In the forward elimination phase the system is written in the equivalent form: 

with 
Uh=b* (56)  

U = DLT (57) 
b* = L-'b (58) 

h = U-'b* (59) 

In the back substitution phase the system is solved and the following solution is obtained: 

Eventual subsequent solutions of the same system with different right-hand terms can be 
obtained in 'resolution', by using the previously calculated matrix U. 
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This operation is possible because the matrix L-l, necessary to determine the right hand 
term of system (59) in relation to the new case, can be expressed by using the factorization of 
(n - 1) elementary matrices: 

(60) 
Each of these matrices is lower triangular with all the terms of the diagonal equal to 1, and 
all the extradiagonal terms equal to zero, except those of column s for matrix L('). These 
terms are obtained by using the corresponding terms of the s row of U by means of the 
simple relation: 

(61) 4 s  E =- 
a s s  

The iterative method used with the frontal method is substantially the forced iteration 
method as described previously. However, a few initial iterations are carried out with the 
first iterative method so as to estimate the dominating eigenvalue of the matrix P and thus 
define the forcing factor in the second iterative method. Three iterations results to be 
suitable for this objective, in all the practical applications made by us. 

L"' . . .  L - 1  = l;(n--I)~(n-2) 

Indicating the mean quadratic residual as: 
a;, = I\h(") - h(n-l)ll (62) 

the following 

represents an estimate of the dominating eigenvalue of matrix P. In order to define Xo we 
will consider the average of the last 2 values of 

and considering 
-1 

0 - A52 + 53) 

A0 = --so 

In this case, the dominating eigenvalue of P is negative. The estimate of a0 is given by 

1 
1 + S" a()=- 

In the iterated frontal method the first iteration is determined by considering the leakage 
terms as null. The three following simple iterations are made in resolution. By using the 
piezometry of the last iteration carried out, the system's right-hand term is updated with the 
leakage terms expressed in formulae (15) and (16). By applying the resolution procedure to 
the obtained right-hand term, the result is: 

(67) b**(n) = L-'(b - A,h(n-l)) 

and one proceeds with a back substitution in equation (59): 

(68) 
We then proceed to forcing iterations. For this purpose, on the basis of equation (66) the 
forcing factor is defined. 

We start from the last previous iteration if the dominating eigenvalue of P is estimated to 
have modulus less than one. In the opposite case, we should start from the initial iteration. In 
this case the right-hand term is updated on the basis of the leakage terms expressed by (15) 

b*(n) = b**(n) 
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Figure 8. Flow chart of the iterated frontal method 
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and (16) with the last available piezometry. The right-hand term is processed in resolution 
according to equation (67). In the back substitution phase this method differs from the first 
by applying in equation (59) the following right-hand term: 

(69) 
The resolution routine with the substructured frontal method uses a couple of files each for 
all the variables interested by the iterative processes (piezometry and right-hand terms). The 
first file, containing the variables related to the proceeding iteration, operates in reading. The 
second, related to the present iteration, operates in writing. On conclusion of each iteration 
the role of the two files is exchanged. 

Figure 8 illustrates the flowchart of the iterated frontal method. In this figure FORCE 
represents a logical variable which assumes the value TRUE corresponding to the forced 
iterations, and FALSE for the simple ones. KITER is the iterations counter. KSOL is the 
logical variable which is TRUE in solution and FALSE in resolution. NSTR is the number of 
considered substructures. ERR is the mean quadratic residual between the two iterations and 
F is the tolerance. 

b*(n) = (1 - ,o)b*(n-*) + ,&**(n) 

NUMERICAL SOLUTION FOR THE UNSTEADY CASE 

The numerical solution for the unsteady case is given by a predictor-corrector procedure. 
Use of the Crank-Nicolson method for the solution of the differential equations of system 
(19) deriving from the finite element discretization, points out the same problems for the 
solution of the frontal method as in the steady case. 

The problem is more complicated, owing to the non-linearity of the system in relation to 
the phreatic zone and to the dependence of the right-hand term on the piezometry. This last 
factor occurs in relation to particular requirements of the hydrogeological models, especially 
in relation to problems of aquifer-river exchange. 

The proposed method solves these problems retaining the performance of the Crank- 
Nicolson method. The differential equation system (19) could be written in an equivalent 
form: 

Coh + &h = b - CO*h* - C,h - Ao*h* - A,h (70) 
(71) 

C0 = C" + C* (72) 
AO=&+A1 (73) 

C*h* + A*h* = b* - C*oh - A*% 
with 

Co and A. are obtained from Co and A' without considering the contribution to their 
assembly, due to leakage, given by equations (24), (25), (22) and (23) respectively. 

The leakage contributions define the matrices C1 and A*. The predictor-corrector proce- 
dure initially determines the predictor piezometry for all the aquifer nodes subject to 
leakage. 

This piezometry defines the right-hand term of system (71) thus resolving it by resorting to 
the Crank-Nicolson methods, and Thomas method for the linear system (since the relative 
matrix is tridiagonal). 

In this way the predictor piezometry on the aquitards is obtained, and thus the predictor 
estimate of leakage is calculated. These appear on the right of system (70). It thus 
determines the corrector piezometry on the aquifers, discretizing initially the time part with 
the Crank-Nicolson method, and solving the resulting linear system with the substructured 
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frontal method previously described. The timestep calculation is concluded by the determi- 
nation of the corrector piezometry on aquitards, which is determined using the same 
procedure as for the predictor piezometry on aquitards. The only difference is that the 
right-hand term of equation (71) is determined on the basis of the corrector piezometry on 
aquifers. The time advancement scheme of the predictor-corrector method is based on a 
sequence of time macrosteps. Each time macrostep is composed of an arbitrary number of 
timestep; all of the same length. This permits one to have the forward elimination phase with 
the frontal method only at the beginning of each macrostep, operating in resolution for all 
the subsequent steps of the macrostep, thus saving a lot of C.P.U. time. At the beginning of 
each macrostep, the matrix of the system in phreatic zones is updated. 

Time dependence of the source terms and boundary conditions is represented by associat- 
ing to them time functions of the step or straight segments type. In the same manner, we 
should take into account the dependence of punctual source terms on the piezometry. 

Figure 9 reproduces the flow chart of the temporal iteration. In it, KSTEP is the counter of 
the timesteps inside a macrostep composed of NSTEP steps. The substructured frontal 
method operates in solution when KSTEP=O (at the beginning of the macrostep), and in 
resolution when KSTEP # 0. No iteration is operated since the leakage evaluated by means 
of predictor piezometrics appears on the equation's right-hand term. 

Predictor piezometry on aquifers 

solving the system of differential equations (74) with an explicit procedure: 
The predictor piezometry on aquifers is determined for each node subject to leakage, 

COIL + Aoh = b - Co*h* - Clh- Ao*h* - A,h (74) 

This system is analogous to system (70) and is obtained by evaluating matrix Co using a 
lumped capacity, that is by assuming that the storage coefficient S to be used in (21), is 
concentrated on the 3 nodes of each element, instead of being distributed on the element. As 

where D, is the element area and &,, is the Kroneker symbol. Thus matrix Cot is diagonal. 

System (74) with the explicit procedure of time discretization becomes: 
To estimate the right-hand term of system (74) the piezometry of the time t" is considered. 

(76) 
1 
- Col (h"+' - h") + Aoh" = b" 
At 

where b" is the right-hand term of system (74) evaluated with the piezometry of the time t". 
This system, owing to the fact that matrix Co is diagonal, permits the solution of the system, 
obtaining h"" on each node subject to leakage. 

In two different circumstances this procedure is not adequate and causes a high fluctuation 
of the solution. The first case occurs in the case of nodes near which considerable water 
extractions exist, with high values of the time increment At. The cause of this is that the term 
Ah", which in (76) represents the flow of fluid on the node, deriving from contiguous nodes, 
is evaluated on the basis of the piezometry of the time t". Consequently, this evaluation does 
not take into account the evolution of piezometry on the time interval At. 

To overcome the above difficulty we have introduced an alternative method for evaluation 
of predictor piezometry for all nodes which, based on the previous evaluations, present a 
piezometric variation exceeding 10 m. Using this method, to determine the drawdown on 
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node Pi, we will imagine that all source terms acting on the elements converging into node Pi 
are located on the element’s barycentre, and assimilated to punctual source terms. The 
equivalent punctual source Qk term represent all the sources in the element. The distributed 
ones, which if depending on time, are evaluated at t + At, and the leakage evaluated on the 
basis of piezometry at time t. 

Drawdown on node P, is estimated as the sum of the drawdown pertaining to each source 
term located on the element barycentres, defined on the basis of the Theis formula: 

Ah, = Ahik (77) 

(78) 
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where: 

Qk = punctual source term equivalent to source terms and leakage operating on the 

Sk =storage coefficient on the element k 
Tk = transmissivity on the element k 
Rk = distince of node P, from barycentre of element k 
At =time increment 

Ei(x) represents the Exponential Integral function 

element 

The second case in which the explicit method becomes critical is represented by the case of 
source points with piezometric control. For this case, a predictor procedure is adopted which 
purposely takes into account the law of dependence of punctual source terms to piezometry. 
We will use q to indicate the source term value as a piezometry function: 

q* is the constant reference source term and f ( h )  is the law of dependence on the piezometry 
on point P. 

By using the explicit procedure for time discretization as in equation (76), with the lumped 
capacity method to define the matrix Colt we can express the increase Ah, of piezometry on 
3 nodes i, j ,  k,  of the element in function of the equation's right-hand term: 

A t  Ah, = 

rn = i, j ,  k 
S,  =storage coefficient of the e-element converging on the node rn 

D, =area of element e 

The denominator sum is extended to all elements converging on node m. We will divide the 
right-hand term b, which appears in this formula, in two parts: 

the part b& is the part depending on the piezometry due to the presence in the element of 
the piezometric-controlled source term, whereas b& is the part not dependent on it. For 
equations (27) and (29) we have: 

with 

where N, is the shape function pertaining to node m and ho is the piezometry on point P at 
time t + A t  which can be expressed according to the 3 node piezometry at time t+At.  

ho= nmo(h, +Ah,), rn = i, j ,  k 
m 
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where h, is the piezometry at time t on node m. For equations (80) and (82) we have : 

kn = A, - %Iof(ho> (84) 

(85 )  

By applying these functions in equation (83) we obtain the following: 

ho = K - Mf( h,) 

K = 

M = C nmoiimo; 

nmo( h, + A,) ; rn = i ,  j ,  k 

m = i, j ,  k 

m 

m 

Assuming that function f ( h )  in equation (79) is the straight line: 

f (h )  = a! + Oh (90) 

The equation (87) admists only a single root given by: 

In the general case, where f(h) is represented by a step or straight segment function defined 
by points: 

(hl, f l )  * * * ( h N ,  f N )  (92) 

several or no roots of equation (87) may exist. For this case, assuming hoo as the piezometry 
on point P at time t ,  we can point out the interval of definition of the function as: 

h, =s h*o h,+l 

(eventually h, = -m, h,+l = +a). We consider therefore the root given by formula (91) with 
coefficients related to the straight line which represents the function in that interval. If the 
obtained root still belongs to this interval, it is considered as the piezometry on the point at 
time t +At. In the opposite case, all the intervals are examined and if there are several roots, 
the one closest to h,, is chosen. In the event of total lock of roots in equation (79) hoo is 
assumed as the value of predictor piezometry. 

Corrector piezometry on the aquifers 

The corrector piezometry is determined by applying the Crank-Nicolson method to system 
(70), where the right-hand term is evaluated by using the predictor piezometry. Thus the 
following scheme results: 
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which gives rise to the following linear system: 

- 1 
At  

A=-&A,+-C,  

System (94) is solved by using the substructured frontal method. The solution occurs with 
assembly of equations and forward eliminations at the beginning of each macrostep, and in 
resolution for every other step of the time macrostep. 

Predictor and corrector piezometry on aquitards 

The predictor and corrector piezometry is determined with the same procedure on each 
aquitard macroelement. Application of the Crank-Nicolson method to the equation of 
system (71) related to internal nodes of each aquitard macroelement, yields a system 
analogous to system (94), in which the system matrix is tridiagonal. Therefore to solve this 
system, the Thomas method is applied. 

Times tep selection 

Selection of the timestep is conditioned by the stability of the Crank-Nicolson method. As 
demonstrated by Smith,6 this method is characterized by a critical timestep, above which the 
numerical solution oscillates around the theoretical one. This critical timestep depends on 
the maximum eigenvalue of matrix C-"A (C and A matrices of system (19)) and cannot be 
estimated beforehand. Any fluctuations in the calculation indicate however that this critical 
timestep has been surpassed and thus the elaboration step must be reduced. A step equal to 
half of the critical one is suitable for most of the applications. A smaller step uselessly takes 
up C.P.U. time without improving the obtained solution. The first calibration elaborations in 
the unsteady state are used to point out the critical step through various attempts. 

This numerical method differs from the conventional Crank-Nicolson one, by introducing 
the predictor estimate which allows one to decouple the aquifer equations from those of the 
aquitards in the corrector phase. The difference between the predictor and the corrector 
piezometry provides a measure of the inaccuracy introduced in this manner. An appropriate 
precision indicator is elaborated to check this inaccuracy. It is given by the quotient between 
the sum of absolute values of the differences between predictor and corrector piezometries at 
time t + A t  and sum of the absolute value of the corrector piezometry increase, between time 
t and t + At. This sum is extended to all the nodes subject to evaluation of the predictor 
piezometry. When this indicator assumes values near to or greater than 1, the timestep must 
be reduced. This indicator is also efficient to indicate the approach or exceeding of the 
critical timestep of the Crank-Nicolson method. 

In practical cases, this indicator has demonstrated that the approximation introduced by 
the predictor estimate and by the decoupling between aquifers and aquitards is not worthy of 
mention for steps equal or less than one half of the critical one. 
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Comparison with iterative methods 

The illustrated method is more suitable for these applications than the conventional 
iterative methods, and in particular it should be preferred to S.O.R. In these iterative 
methods, the number of iterations required for the solution of each step depends both on the 
maximum eigenvalue of the error propagation matrix, and on the distance between the 
solution to time t + A t  and the solution to time t, which defines the timestep's initial iteration. 

For this problem, the longer the timestep is, the more iterations are necessary to obtain 
the solution. Furthermore, considerable piezometric variations occur in relation to abrupt 
source term variations; the piezometric variations require a major number of iterations to 
reach the solution. This fact is very frequent in the simulation of real aquifer systems in 
relation to the exploitation history of aquifer bodies and to the hypothesis to be simulated. 

With the conventional iterative methods, if there is a rapid source term variation, it often 
becomes necessary to adopt a time progression scheme in geometric progression with 
timesteps which are considerably smaller than one half of the Crank-Nicolson critical step. 
This serves to reduce the total number of iterations required for the solution. Since the 
substructured frontal method is a direct solution method, it is not influenced by these factors 
in relation to the elaboration time and permits the use of the maximum timestep allowed by 
the Crank-Nicolson method. 

The fundamental arithmetical operations carried out in resolution regime for the timestep 
solution are the same requested to carry out two matrix products per vector with a 
bandwidth equal to the front's average value. This can be inferred from (60) and (61). 

APPLICATIONS 

The illustrated method was verified in a hypothetical case of an interconnected aquifer 
systems, reproduced in Figure 10. Thus it was possible to determine its analytical solution in 
a steady state case. The boundary conditions, the physical parameters and the source terms 

imposed piezometrv h=1 

IA=120m -- I B  =Ic=180 m - - +i 

K = K = K = K = 1C- (permeability on aquifer) 
A B C  

K D= 1 0 - ~  (permeability on aquitard) 

an =ae = o  , ac = (1112) . lo'mlsec. (source tern) 

S C=60m 
I 

Figure 10. Hypothetical interconnected aquifer system with two aquifer levels, a branching line and an aquitard 
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Figure 11. Schematization of finite elements, with three substructures of the interconnected aquifer system of 
Figure 10. Coarse network (32 aquifer elements, 9 aquitard elements, 27 nodes) 

were assigned in a uniform manner in order to obtain a one-dimensional case. The 
corresponding theoretical solution is given by the following equation: 

h, = c , y  +3, O S y S 1 2 0  

120 S y S 300 1 (98) 
h - c l e y J ( 2 a )  + c e-w’(2a) + c + c + y2 - b 

h - - C  eyJ(za)-C e-YJ(2at+C3y+ +C4, 12OSy<300 

8- 2 3Y 4 4 ’  

c- 1 2 (y:b 2”,> 
where: 

KD 1 

QC 

a = - - = 1.1111111 x 10+ (s = s8= sc) 
SD SK 

b =-= 1.3888888X 
sK 

CI = -0-31566949 
C2 = -4.5234994 
C, = -0.021769963 
C4= 6.8041551 
C, = -0*011943671 

Figure 11 illustrates the schematization of the finite elements adopted. The aquifers have 
been divided by means of 3 substructures with reference to the subdivision in 3 water bodies, 
as illustrated in Figure 10. Figure 12 reproduces the comparison between the analytical 
solution and the finite element calculation along the middle section. 

Figure 13 illustrates the fluid mass balance on the system’s 3 aquifers and the reciprocal 
fluid‘s mass exchanges, calculated analytically starting from (98) applying the Darcy law. 
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Figure 12. Comparison between theoretical solution and finite element solution along the middle section for the 
cases of Figure 10 and Figure 11 

In Table I the balance evaluated with the E.N.S. method is indicated alongside the 
analytical balance. The same balance, evaluated with the conventional method starting from 
the finite element solution, is illustrated. The conventional evaluation is obtained by 
estimating the piezometry gradient in the y-axis direction, on the basis of the linear shape 
function. A constant gradient value is assumed along the y = 0, y = 120 and y = 300 line, an 
average of the three values on the three line’s nodes. Using this gradient and applying the 
Darcy law, it is possible to obtain the source term equivalent to the imposed piezometry 
conditions and the flow outgoing from the branching lines indicated in Table I. 

According to Table I it results that the two methods give practically the same value for 
source terms equivalent to imposed piezometry conditions for y = 0. The reason for this is 
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Table I. Comparison between method E.N.S. and the conventional method for the evaluation of fluid 
mass balance in the steady-state (The balance terms are expressed in us) 

Coarse-grid with 60 m sides Fine-grid with 12 m sides 

Theoretical Conventional Conventional 
value method E.N.S. method E.N.S. 

Source equivalent to 193.4874 193-5829 193.5832 193.4437 193.4444 
imposed piezometry 
conditions Aquifer A 
y = o  

Flow entering Aquifer 28.4056 27.4560 28.1878 28-4223 28.4579 
B through branching 
lines y = 120 

C through branching 
lines y = 120 

imposed piezometry 
conditions Aquifer B 
y = 300 

Flow entering Aquifer 165.0818 136.1256 165.3935 159.0140 364.9793 

Source equivalent to 13.4874 17.0531 13.5819 14.1694 13.4638 

that the elements affected by the imposed piezometry conditions are without any source and 
leakage terms, and that the case is steady state. In this case, (34) is reduced to the term 
C, amshs which expresses the source term evaluation, only on the basis of the shape function 
derivative, in a manner very similar to the conventional one. In the presence of source terms, 
leakage terms and storage depletion (for the unsteady case), the conventional method assigns 
as flow crossing an aquifer section, even the fluid mass which in reality participates as a 
source term, leakage term or storage depletion on the elements in contact with the section 
line. The mass, improperly assigned as mass flowing through the aquifer section, is the one 
that pertains to the node of the section line, in the partition of the element’s fluid mass into 
nodal terms. This fact is evident if the flow exiting through the extreme y = 300 of aquifer C 
(Figure ll), is evaluated with the conventional method. Instead of a null flux, coherently 
with the posed boundary condition, an exiting flux is revealed equal to 26.5278 l/s. This flux 
is equal to approximately one half of the source terms pertinent to the four interested 
elements and can be estimated as 601/s, which decreases for 6-8181/s due to leakage 
(evaluated on the basis of finite elements solution). 

The difference between the conventional method and that E.N.S. increases as much as the 
source term increases (and storage depletion in the unsteady case). This fact is illustrated in 
Table I. 

In the examined case, the major difference between the two methods occurs in the 
evaluation of the flux entering Aquifer C through the branching lines. This is due to the fact 
that the meshes of the third substructure in contact with the branching line are affected by 
the distributed source term (in addition to leakage). On the other hand, a minor difference is 
noted in the evaluation of flux entering Aquifer B through the branching line. This is due to 
the fact that this aquifer is affected only by leakage (less important than the distributed 
source term). Equation (34) can be considered different from the conventional formulation 
for two corrective terms. The first C Cmshs tied to storage depletion, and the second -bm, tied 
to the source term present on the elements in contact with the line in question. The relative 
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Figure 14. Schematization by finite elements with three substructures of the interconnected aquifer system of Figure 
10. Fine network (800 aquifer elements, 165 aquitard macroelements, 462 nodes) 

importance of these two corrective terms tends to decrease with the decrease in the mesh 
area. Hence, by thickening the network, the two methods tend to give the same results (this 
is not the case for meshes affected by punctual source terms). This is evident in Table I, 
which also indicates the calculation of finite elements related to the same case with network 
whose side elements are five times less, as illustrated in Figure 14 (fine network). 

The comparison between the two cases, and between these and the analytical solution, 
points out how on the whole, the E.N.S. method provides a degree of accuracy for the coarse 
network (32 aquifer elements, 9 aquitard macroelements, 27 nodes), which is similar to that 
of the conventional method on the fine network (800 aquifer elements, 165 aquitard 
macroelements, 462 nodes). In some situations the conventional method gives better results 
(evaluation of flow entering Aquifer B through the branching line, with the fine network); 
and this can occur in cases in which both methods give good results and the difference 
between the two evaluations is insignificant. 

The rectangular monolayered aquifer illustrated in Figure 15, was used to verify the 

r--- ‘lux 

& - 1 2 0 m  + 180 m ---f 

Figure 15. Monolayered aquifer for verification of the unsteady-state case 
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Table 11. Timestep advancement 
scheme for the unsteady calculation 
on the monolayered aquifer of Fig- 

ure 15 

Macrostep No. of Length of 
number steps time (s) 

1 15 5 
2 1 75 
3 3 150 
4 3 300 
5 2 750 
6 2 1500 
7 3 3000 
8 1 7500 

unsteady case. The initial conditions and the constants were considered uniform and the 
boundary conditions are such as to have the one-dimensional case. The solution to this 
problem was given by Carslaw and Jaeger;7 

where ho = 3 m, L = 300 m, T= 0.06, S = 0.01 
For the finite elements solutions, two finite element networks were considered. The first 

coarse network with a 6 0 m  cathetus, as in the case of Figure 11, and the second fine 
network, with a 12 m cathetus, as in Figure 14, with only the first level considered. For both 
networks, the elaborations in unsteady state were carried out with the timestep advancement 
scheme of Table 11. 

Table 111. Flow equivalent to imposed piezometry conditions ( h  = 3  for y =0) for the 
unsteady case of Figure 15. Comparison between E.N.S. method and the conventional method 

Coarse-grid case Fine-grid case 
sides = 60 m sides = 12 m 

Analytical values Conventional Conventional 
t (s) of flux E.N.S. method E.N.S. method 

75 
150 
300 
450 
600 
900 

1 200 
1500 
2 250 
3 000 
4 500 
6 000 
9 000 

12 000 
15 000 
22 500 

574-4776 
406.2166 
287-2385 
234.5293 
203.1083 
165-8372 
143-6 182 
128.4453 
104.6177 
89.6087 
68.8734 
53.6899 
32.7656 
20.0032 
12.2119 
3.5563 

486.2936 
388.1024 
286.9465 
23 1.4578 
200.6151 
165.1372 
142763 15 
127.6193 
104-2376 
89.4018 
68.8700 
53.6469 
32-3734 
19.4802 
11.7191 
2-7915 

364-8035 
307.2692 
242.5837 
208.1661 
185.1792 
155.081 1 
136-4231 
123-2347 
101.3232 
87.5725 
67.5360 
52.6571 
31.6773 
19.0609 
11.4659 
2.6753 

580.8455 
400.6765 
283-6804 
231-6287 
202.5429 
164.2884 
143.2759 
127.7376 
104.0906 
88.9699 
68.7755 
53.3568 
32.5624 
19.3683 
12.0159 
2.6137 

565.4665 
391.3926 
280.7322 
230.2854 
20 1.7849 
163-7827 
143.0000 
127.5326 
103.9660 
88-8906 
68-7234 
53-3175 
32.5367 
19.3532 
12.0080 
2.6098 
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0 60 120 180 240 300 

- Analytical values 

4- Fine grid F.E. s o l u t i o n  

4 Coarse grid F.E. solution 

Figure 16. Piezometric trend for the unsteady-state case on the monolayered rectangular aquifer (120 m )i 300 m X 
60 m) of Figure 15 

Figure 16 illustrates the analytical solution and the solution of finite elements along the 
middle section with the two adopted networks. 

Table I11 illustrates in time, the flow equivalent to the imposed piezometry conditions for 
y = 0, and Table IV indicates the flow crossing the section y = 120 m. The evaluation is made 
both with the previously illustrated conventional method, and with the E.N.S. method. Both 
methods are compared with the analytical values, inferred by applying Darcy’s law to the 
piezometry expressed with (99). On the basis of both tables, it results that, even for the 
unsteady case, the E.N.S. method applied with the coarse network (20elements and 18 
nodes), has a precision comparable to that of the conventional method on the fine network 



474 2.. SARTORI AND G. PEVERIERI 

Table IV. Flow evaluated through section y = 120 of the unsteady case of Figure 15. 
Comparison between the E.N.S. method and the conventional method 

Coarse-grid case Fine-grid case 
sides = 60 m sides = 12 m 

Analytical values Conventional Conventional 
t (4 of flux E.N.S. method E.N.S. method 

75 
150 
300 
450 
600 
900 

1200 
1500 
2 250 
3 000 
4 500 
6 000 
9 000 

12 000 
15 000 
22 500 

0.3469 
10.4161 
46.6481 
704640 
82.1912 
90.8170 
91.4264 
89.3721 
81.1537 
72.3726 
56.7988 
44.4066 
27.1127 
16.5523 
10.1052 
2.9428 

-42.9251 
5.3820 

42-5220 
62.0124 
75.4193 
82.2895 
855858 
854001 
76.9082 
70.0648 
54-6419 
42.7269 
25.2190 
15.1742 
9.1292 
1.8493 

-12.8005 
- 14.0288 

10.3418 
33.1061 
47.2575 

68.4060 
70.3061 
68.0113 
61.5436 
48.5171 
37.6928 
22.6893 
13-6454 
8.2123 
1.9135 

62.4842 

-0.0209 
7.0194 

39.3256 
63.2973 
74.8102 
85.3812 
86.8351 
85.8633 
78.5052 
70.5 67 5 
55.2529 
43-2364 
25.9416 
15.7499 
9.4525 
2.2287 

0.0203 
3.7543 

28.8406 
54.9799 
68.3094 
80.6168 
83.3456 
82.7317 
76.9463 
68.9427 
54-2682 
42.2685 
25.5917 
15.4109 
9-3658 
2.1795 

(500 elements, 286 nodes). In the case of Table I11 it should be pointed out how in some 
cases the E.N.S. method does not improve its accuracy (and in some cases it is worsened) in 
the fine network case. Nevertheless, it provides better results than the corresponding 
conventional case. This is explained by the fact that the corrective effect of the term C Cmshs 
decreases corresponding to the nearing of affected nodes (caused by the effect of mesh 
reduction) to boundary nodes, for which it is h ,=O,  as an effect of the constant imposed 
piezometry conditions. The differences however are insignificant, and in any case the E.N.S. 
method gives better results than the conventional one. This does not occur in the case of 
Table IV concerning flow evaluation along section y = 120 m. The sudden transfer from the 
piezometry of value 0 to time t = 0, to value 3 to time t = 0, for the nodes subject to imposed 
piezometry conditions, creates a few problems to the Crank-Nicolson method for the initial 
times. This is the cause of the unnatural negative flows for 75 s and 150 s, estimated in 
section y=120 both by means of the conventional method and the E.N.S. method. This 
effect, which concerns only the initial times, can be reduced by reducing the timestep and the 
newtork’s mesh. Figure 16 illustrates the finite element solution compared with the corres- 
ponding analytical solution. Figure 17, on the other hand, illustrates the comparison between 
the E.N.S. method for flux evaluation and the conventional one, for the two sections in 
question (y  = 0  and y = 120), for the coarse grid case. The slight violations in the mass 
conservation of the E.N.S. method, which can be seen in Table I for the steady and unsteady 
case, are caused by the truncation error when assembling equations (34) and (37), and by the 
residual error in piezometry due to the iterative process. This violation is more relevant for 
the unsteady case since, in addition to the truncation error in assembly of (34) and (37) there 
is an error caused by the finite difference estimation of time derivative, and the error 
introduced by the predictor-corrector procedure. With the purpose of checking these errors, 
an indicator of balance quality is elaborated for each balance, formed by the quotient 
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Figure 17. Flux evaluation in the unsteady-state regime along sections y = 0  and y = 120 of the monolayered 
rectangular aquifer. Comparison between E.N.S. method and the conventional method 

between the difference of the computed mass entering and exiting from the zone interested 
by the balance, and the average of entering and exiting mass. 

For the steady state case of Figure 10, the indicator resulted less 0.23 per cent for balance 
evaluation of the three substructures which form the aquifer. In the unsteady state case of 
Figure 15, the balance was estimated in the two substructures in which the aquifer is divided 
by section y = 120. The balance quality indicator assumed average values of approximately 3 
per cent, reaching values of 10 per cent when the enteringlexiting water masses resulted a 
small quantity when approaching the steady state regime (about 0.01 Us). No significant 
differences were recorded between the coarse-grid and fine-grid network, in relation to the 
balance quality indicator. 

The illustrated method has been applied in very complex practical cases. The operational 
performance met the expectations. Particularly, it was confirmed that the trend of time 
consumption of C.P.U. according to the degree of freedom of the system is typical of 
bidimensional cases, and not the most onerous one of three-dimensional problems, to which 
the problem is comparable in relation to the structure of the matrix of system (19). In the 
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Table V. Description of three applications 
~ 

Cases I I1 I11 

Number of aquifer levels 2 2 3 
Number of substructures 4 12 20 
Number of elements on aquifers 693 3529 4407 
Number of aquitard macroelements 109 3 12 776 

Total number of elements 1129 4777 7511 
Number of nodes on aquifers 419 1917 2362 
Number of aquitard internal nodes 327 936 2328 
Total number of nodes 746 2853 4690 
Number of branching nodes 10 41 62 
Average linear front 53-21 48-58 
Average quadratic front 64.55 58.93 
Maximum front 145 139 

Number of elements per macroelement 4 4 4 

I Case: Coarse network used for preliminary calibration of two layered mathematical 
model of Western Libya aquifer. 
I1 Case: Fine network for two layered mathematical model of the same aquifer. 
I11 Case: Fine network for three layered detailed model of Western Libya aquifer. 

Table VI. C.P.U. times and iterations of the steady state case 

Cases I I1 111 

C.P.U. times (s) on IBM 3033 30.83 172.46 259-21 
Number of iterations 3 6 6 
Dominating eigenvalues of P -2.2 -2.4 
Dominating eigenvalue of P 0.14 0.45 

Table VII. C.P.U. times and timesteps for the unsteady case 

Cases I I1 111 

Simulation period 

Duration of simulation (years) 
Number of macrosteps 
Total number of steps 
Step duration 1st macrostep (years) 
Number of steps 1st macrostep 
Step duration 2nd macrostep (years) 
Number of steps 2nd macrostep 
C.P.U. time (s)  on IBM 3033 

8 0 4 0 ~ ~  1979 
1960 2050 

10 000 71 
2 2 

19 15 
100 3 
10 2 

1 000 5 
9 13 

151 780 

1 980 
2 030 

50 
2 

24 
1-25 
8 
2-5 

16 
1147 

The models cover a total surface of 800 000 kmz 
The minimum area element in the 2nd and 3rd case has a surface of 3 km2 
The maximum area is approximately 3 000 km2 
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steady-state case there has been a rapid convergence of the iterative method (a maximum of 
7 iterations for the most complex cases). In the unsteady cases, the predictor-corrector 
method proved to be very stable, and this permitted the use of very wide timesteps. In 
particular, a simulation was carried out along a time span of 10,000 years (simulation of the 
aquifer trend in Western Libya from the last pluvial age to the present). 

Table V illustrates 3 real particularly significant cases. 
Table VI gives the C.P.U. time employed in the steady state case, indicating the number of 

iterations requested and the estimate of dominating eigenvalues of matrix P and P related to 
this case. The iterative process is stopped when the mean quadratic residual between 2 
iterations is less than one centimetre. 

Table VII illustrates the timesteps characteristics and the C.P.U. time for the unsteady 
case. 

1 s t  aqul ta t  
I O V O I  

2 n d  a q u I t o r 
I O V O l  

- 
Figure 19. Branching lines between the various levels of the Western Libya aquifer 
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Figure 18 represents the network of finite elements of the 111 case, whereas the I1 case has 
a network composed only of 2nd and 3rd level elements in the I11 case. Figure 19 illustrates 
the branching lines of the I11 case. 

Typical results given by the model are presented in Figures 20 and 21. Figure 20 
represents the steady state piezometric distribution given by the model and corresponds to 
the groundwater system prior to its modern development (year 1960); Figure 21 shows the 
groundwater past history in the A1 Jufrah area. In this area only the Mizda Aquifer is 
exploited. The piezometric decline observed in the Paleozoic aquifer is due to the combined 
effect of the leakage through the Cenomanian Aquitard and of the lateral contact between 
the Mizda and the Paleozoic Aquifers along the Aquifer branching SE of A1 Jufrah in 

350 
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W PALEOZOIC- - - - 
2 320.. 
0 
N 

a 300 E X T R A C T I O N  R A T E  

- 
w 

a 
1 ,0,2 c 

x 
W 

290 0.0 
1960 1965 1970 1975 1980 

Figure 21. Groundwater production history in Al Jufrah 
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correspondance of the physical boundary of the Cenomanian aquitard. More details about 
the Western Libya aquifer model are given by Pizzi and Sartori.8 
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